Manifold Regularized Discriminative Neural Networks
نویسندگان
چکیده
Unregularized deep neural networks (DNNs) can be easily overfit with a limited sample size. We argue that this is mostly due to the disriminative nature of DNNs which directly model the conditional probability (or score) of labels given the input. The ignorance of input distribution makes DNNs difficult to generalize to unseen data. Recent advances in regularization techniques, such as pretraining and dropout, indicate that modeling input data distribution (either explicitly or implicitly) greatly improves the generalization ability of a DNN. In this work, we explore the manifold hypothesis which assumes that instances within the same class lie in a smooth manifold. We accordingly propose two simple regularizers to a standard discriminative DNN. The first one, named Label-Aware Manifold Regularization, assumes the availability of labels and penalizes large norms of the loss function w.r.t. data points. The second one, named Label-Independent Manifold Regularization, does not use label information and instead penalizes the Frobenius norm of the Jacobian matrix of prediction scores w.r.t. data points, which makes semi-supervised learning possible. We perform extensive control experiments on fully supervised and semi-supervised tasks using the MNIST, CIFAR10 and SVHN datasets and achieve excellent results.
منابع مشابه
Graph regularized Restricted Boltzmann Machine.
The restricted Boltzmann machine (RBM) has received an increasing amount of interest in recent years. It determines good mapping weights that capture useful latent features in an unsupervised manner. The RBM and its generalizations have been successfully applied to a variety of image classification and speech recognition tasks. However, most of the existing RBM-based models disregard the preser...
متن کاملManifold regularized deep neural networks
Deep neural networks (DNNs) have been successfully applied to a variety of automatic speech recognition (ASR) tasks, both in discriminative feature extraction and hybrid acoustic modeling scenarios. The development of improved loss functions and regularization approaches have resulted in consistent reductions in ASR word error rates (WERs). This paper presents a manifold learning based regulari...
متن کاملGraph based manifold regularized deep neural networks for automatic speech recognition
Deep neural networks (DNNs) have been successfully applied to a wide variety of acoustic modeling tasks in recent years. These include the applications of DNNs either in a discriminative feature extraction or in a hybrid acoustic modeling scenario. Despite the rapid progress in this area, a number of challenges remain in training DNNs. This paper presents an effective way of training DNNs using...
متن کاملSupport Regularized Sparse Coding and Its Fast Encoder
Sparse coding represents a signal by a linear combination of only a few atoms of a learned over-complete dictionary. While sparse coding exhibits compelling performance for various machine learning tasks, the process of obtaining sparse code with fixed dictionary is independent for each data point without considering the geometric information and manifold structure of the entire data. We propos...
متن کاملDiscriminative Sparse Coding on Multi-Manifold for Data Representation and Classification
Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics, etc. However, the conventional sparse coding algorithms and its manifold regularized variants (graph sparse coding and Laplacian sparse coding), learn the codebook and codes in a unsupervised manner and neglect the class informati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1511.06328 شماره
صفحات -
تاریخ انتشار 2015